CSE 451: Operating Systems
Winter 2013

File Systems

Gary Kimura

File systems

* The concept of a file system is simple
— the implementation of the abstraction for secondary storage
 abstraction = files
— logical organization of files into directories
* the directory hierarchy

— sharing of data between processes, people and machines
* access control, consistency, ...

« The discussion on file systems often center around
two concepts
— There is the on-disk structure (i.e., how is the data
persistently stored on secondary storage)

— There is the software component that manages the storage
and communicates with the user to store and retrieve data
(hopefully without any loss of information)

Files

« Afile is a collection of data with some properties
— contents, size, owner, last read/write time, protection ...

* Files may also have types
— understood by file system
 device, directory, symbolic link

— understood by other parts of OS or by runtime libraries
» executable, dll, source code, object code, text file, ...

« Type can be encoded in the file’s name or contents
— windows encodes type in name (and contents)
e .com, .exe, .bat, .dll, .jpg, .mov, .mp3, ...

— old Mac OS stored the name of the creating program along
with the file

— unix does both as well
* in content via magic numbers or initial characters (e.g., #!)

Unix

* create(name)

* open(name, mode)
* read(fd, buf, len)

« write(fd, buf, len)

* sync(fd)

» seek(fd, pos)

* close(fd)

* unlink(name)

* rename(old, new)

Basic operations

NT

* CreateFile(name, CREATE)
* CreateFile(name, OPEN)

* ReadFile(handle, ...)

» WriteFile(handle, ...)
 FlushFileBuffers(handle, ...)
 SetFilePointer(handle, ...)

» CloseHandle(handle, ...)

* DeleteFile(name)

» CopyFile(name)

* MoveFile(name)

File access methods

« Some file systems provide different access methods
that specify ways the application will access data

— sequential access
* read bytes one at a time, in order

— direct access
* random access given a block/byte #

— record access
« file is array of fixed- or variable-sized records

— Indexed access
* FS contains an index to a particular field of each record in a file
» apps can find a file based on value in that record (similar to DB)

« Why do we care about distinguishing sequential from
direct access?
— what might the FS do differently in these cases?

Directories

 Directories provide:
— away for users to organize their files
— aconvenient file name space for both users and FS’s

« Most file systems support multi-level directories

— naming hierarchies (c:\, c:\DocumentsAndSettings,
c:\DocumentsAndSettings\MarkZ, ...)

* Most file systems support the notion of current
directory

— absolute names: fully-qualified starting from root of FS
C:\> cd c:\Windows\System32

— relative names: specified with respect to current directory
C:\> c:\Windows\System32 (absolute)
C:\Windows\System32> cd Drivers
(relative, equivalent to cd c: \Windows\System32\Drivers)

Directory internals

« A directory is typically just a file that happens to
contain special metadata
— directory = list of (name of file, file attributes)

— attributes include such things as:
* size, protection, location on disk, creation time, access time, ...

— the directory list can be unordered (effectively random)

« when you type “Is” or “dir /on” , the command sorts the results
for you.

» some file systems organize the directory file as a BTree, giving
a “natural” ordering
— What case to use for sort?
— What about international issues?

Path name translation

« Let's say you want to open “C:\one\two\three”

success = CreateFile (“c:\\one\\two\\three”, ..);

 What goes on inside the file system?

open directory “c:\” (well known, can always find)

search the directory for “one”, get location of “one”

open directory “one”, search for “two”, get location of “two”
open directory “two”, search for “three”, get loc. of “three”
open file “three”

(of course, permissions are checked at each step)

« FS spends lots of time walking down directory paths

this is one reason why open is separate from read/write (session
state)

FS will cache prefix lookups to enhance performance

« C:\Windows, C:\Windows\System32, C:\Windows\System32\Drivers all
share the “C:\Windows” prefix

File protection

* FS must implement some kind of protection system

— to control who can access a file (user)
— to control how they can access it (e.g., read, write, or delete)

* More generally:
— generalize files to objects (the “what”)
— generalize users to principals (the “who”, user or program)
— generalize read/write to actions (the “how”, or operations)

« A protection system dictates whether a given action
performed by a given principal on a given object
should be allowed

— e.g., you can read or write your files, but others cannot

— e.g.,your canread C:\Windows\System32\ntoskrnl.exe
but you cannot write to it

Model for representing protection

« Two different ways of thinking about it:

— access control lists (ACLS)

» for each object, keep list of principals and principals’ allowed
actions

— capabilities

« for each principal, keep list of objects and principal’s allowed
actions

« Both can be represented with the following matrix:

principals

pm————- \ objects
C:\boot.inii C:\DocumentsAndSettings/
1| Markz/desktop
Administrator | rw | rw
markz [t aw
guest |

N\
1

’ capability

10

ACLs vs. Capabillities

« Capabillities are easy to transfer
— they are like keys: can hand them off
— they make sharing easy

 ACLs are easier to manage

— object-centric, easy to grant and revoke
 to revoke capability, need to keep track of principals that have it
» hard to do, given that principals can hand off capabilities

 ACLs grow large when object is heavily shared
— can simplify by using “groups”
e put users in groups, put groups in ACLs

— additional benefit

« change group membership, affects ALL objects that have this
group inits ACL

11

he original Unix file system

Dennis Ritchie and Ken Thompson, Bell Labs, 1969

“UNIX rose from the ashes of a multi-organizational
effort in the early 1960s to develop a dependable
timesharing operating system” — Multics

Designed for a “workgroup” sharing a single system

Did its job exceedingly well
— Although it has been stretched in many directions and made
ugly in the process

A wonderful study in engineering tradeoffs

All disks are divided into five parts ...

Boot block
— can boot the system by loading from this block

Superblock

— specifies boundaries of next 3 areas, and contains head of
freelists of inodes and file blocks

I-node area

— contains descriptors (i-nodes) for each file on the disk; all i-
nodes are the same size; head of freelist is in the superblock

File contents area
— fixed-size blocks; head of freelist is in the superblock

Swap area
— holds processes that have been swapped out of memory

13

So ...

* You can attach a disk to a dead system ...
 Bootitup ...

* Find, create, and modify files ...

— because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are

— superblock also contains i-node number of root directory

14

he flat (I-node) file system

« Each file is known by a number, which is the number
of the I-node
— seriously -0, 1, 2, 3, etc.!
— why is it called “flat™?

* Files are created empty, and grow when extended
through writes

15

« Adirectory is a flat file of fixed-size entries
« Each entry consists of an i-node number and a file

name
I-node number File name
152
18
216 my_file
4 another _file
93 oh_my god
144 a_directory

* It's as simple as that!

he tree (directory, hierarchical) file system

16

The “block list” portion of the I-node (Unix Version 7)

 Points to blocks in the file contents area

« Must be able to represent very small and very large files.
How?

« Each inode contains 13 block pointers
— first 10 are “direct pointers” (pointers to 512B blocks of file data)
— then, single, double, and triple indirect pointers

e
/'. +— M [
0 - : >
1 //'. ——H — N
pd —
10 / : P |
11 — __.-

[\

12 \:,/5’/5

17

Protection

Objects: individual files
Principals: owner/groups/everyone
Actions: read/write/execute

This Is pretty simple and rigid, but it has proven to be
about what we can handle!

18

File system consistency

Both i-nodes and file blocks are cached in memory

The “sync” command forces memory-resident disk
Information to be written to disk
— system does a sync every few seconds

A crash or power failure between sync’s can leave an
Inconsistent disk

You could reduce the frequency of problems by
reducing caching or via write-through, but
performance would suffer big-time

19

Consistency of the Flat file system

Is each block accounted for?

— Belongs to precisely one file or is on free list
— Whatto do if in multiple files?

Mark-and-sweep garbage collection of disk space
— Start with bitmap (one bit per block) of zeros

— For every inode, walk allocation tree setting bits

— Walk free list setting bits

— Bits that are one along the way?

— Bits that are zero at the end?

Consistency of the directory structure

Verify that directories form a tree

Start with vector of counters, one per inode, set to
Zero

Perform tree walk of directories, adjusting counters
on every name reference

At end, counters must equal link count
— What do you do when they don’t?

21

22

Journaling File Systems

« Became popular ~2002, but date to early 80’s

« There are several options that differ in their details

— Ntfs (Windows), Ext3 (Linux), ReiserFS (Linux), XFS (Irix),
JFS (Solaris)

« Basic idea

— update metadata, or all data, transactionally
« ‘all or nothing”
 Failure atomicity
— if a crash occurs, you may lose a bit of work, but the disk will
be in a consistent state

* more precisely, you will be able to quickly get it to a consistent
state by using the transaction log/journal — rather than scanning
every disk block and checking sanity conditions

23

Why are journaling file systems so
popular?

In any file system buffering is necessary for
performance

But suppose a crash occurs during a file creation:

1. Allocate a free inode
2. Point directory entry at the new inode

In general, after a crash the disk data structures may
be in an inconsistent state

— metadata updated but data not

— data updated but metadata not

— either or both partially updated

fsck (i-check, d-check) are very slow
— must touch every block
— worse as disks get larger!

24

Where Is the Data?

In the file systems we have seen already, the data is
In two places:

— On disk

— In in-memory caches

The caches are crucial to performance, but also the
source of the potential “corruption on crash” problem

The basic idea of the solution:
— Always leave “home copy” of data in a consistent state

— Make updates persistent by writing them to a sequential
(chronological) journal partition/file

— At your leisure, push the updates (in order) to the home
copies and reclaim the journal space

— Or, make sure log is written before updates

25

Undo/Redo log

 Log: an append-only file containing log records
— <start t>
 transactiont has begun
— <t,X,v>
 transactiont has updated block x and its new value is v

— Can log block “diffs” instead of full blocks

— Can log operations instead of data (operations must be
idempotent and undoable)

— <commit t>
 transaction t has committed — updates will survive a crash
« Committing involves writing the records — the home
data needn’t be updated at this time

26

If a crash occurs

 Open the log and parse

— <start> <commit> => committed transactions
— <start> no <commit> => uncommitted transactions

Redo committed transactions

— Re-execute updates from all committed transactions

— Aside: note that update (write) is idempotent: can be done
any positive number of times with the same result.

Undo uncommitted transactions

— Undo updates from all uncommitted transactions

— Write “compensating log records” to avoid work in case we
crash during the undo phase

27

Managing the Log Space

« A cleaner thread walks the log in order, updating the

home locations (on disk, not the cache!) of updates in
each transaction

— Note that idempotence is important here — may crash while
cleaning is going on

 Once a transaction has been reflected to the home
blocks, it can be deleted from the log

28

Impact on performance

The log Is a big contiguous write
— very efficient, but it IS another 1/O

And you do fewer scattered synchronous writes
— very costly in terms of performance

So journaling file systems can actually improve
performance (but not in a busy system!)

As well as making recovery very efficient

29

Want to know more?

« CSE 444! This is a direct ripoff of database system
techniques

— But it is not what Microsoft Windows Longhorn (aka Vista)
was supposed to be before they backed off — “the file system
IS a database”

— Nor is it a “log-structured file system” — that’s a file system in
which there is nothing but a log (“the log is the file system”)

* “New-Value Logging in the Echo Replicated File
System”, Andy Hisgen, Andrew Birrell, Charles
Jerian, Timothy Mann, Garret Swart

— http://citeseer.ist.psu.edu/hisgen93newvalue.html

30

