
CSE 451: Operating Systems

Winter 2013

File Systems

Gary Kimura

2

File systems

• The concept of a file system is simple

– the implementation of the abstraction for secondary storage

• abstraction = files

– logical organization of files into directories

• the directory hierarchy

– sharing of data between processes, people and machines

• access control, consistency, …

• The discussion on file systems often center around

two concepts

– There is the on-disk structure (i.e., how is the data

persistently stored on secondary storage)

– There is the software component that manages the storage

and communicates with the user to store and retrieve data

(hopefully without any loss of information)

3

Files

• A file is a collection of data with some properties
– contents, size, owner, last read/write time, protection …

• Files may also have types
– understood by file system

• device, directory, symbolic link

– understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …

• Type can be encoded in the file’s name or contents
– windows encodes type in name (and contents)

• .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

– old Mac OS stored the name of the creating program along
with the file

– unix does both as well

• in content via magic numbers or initial characters (e.g., #!)

4

Basic operations

NT

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

Unix

• create(name)

• open(name, mode)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

• rename(old, new)

5

File access methods

• Some file systems provide different access methods
that specify ways the application will access data
– sequential access

• read bytes one at a time, in order

– direct access

• random access given a block/byte #

– record access

• file is array of fixed- or variable-sized records

– indexed access

• FS contains an index to a particular field of each record in a file

• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from
direct access?
– what might the FS do differently in these cases?

6

Directories

• Directories provide:

– a way for users to organize their files

– a convenient file name space for both users and FS’s

• Most file systems support multi-level directories

– naming hierarchies (c:\, c:\DocumentsAndSettings,

c:\DocumentsAndSettings\MarkZ, …)

• Most file systems support the notion of current

directory

– absolute names: fully-qualified starting from root of FS
C:\> cd c:\Windows\System32

– relative names: specified with respect to current directory
C:\> c:\Windows\System32 (absolute)

C:\Windows\System32> cd Drivers

 (relative, equivalent to cd c:\Windows\System32\Drivers)

7

Directory internals

• A directory is typically just a file that happens to

contain special metadata

– directory = list of (name of file, file attributes)

– attributes include such things as:

• size, protection, location on disk, creation time, access time, …

– the directory list can be unordered (effectively random)

• when you type “ls” or “dir /on” , the command sorts the results

for you.

• some file systems organize the directory file as a BTree, giving

a “natural” ordering

– What case to use for sort?

– What about international issues?

8

Path name translation

• Let’s say you want to open “C:\one\two\three”
success = CreateFile(“c:\\one\\two\\three”, …);

• What goes on inside the file system?

– open directory “c:\” (well known, can always find)

– search the directory for “one”, get location of “one”

– open directory “one”, search for “two”, get location of “two”

– open directory “two”, search for “three”, get loc. of “three”

– open file “three”

– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths

– this is one reason why open is separate from read/write (session

state)

– FS will cache prefix lookups to enhance performance

• C:\Windows, C:\Windows\System32, C:\Windows\System32\Drivers all

share the “C:\Windows” prefix

9

File protection

• FS must implement some kind of protection system

– to control who can access a file (user)

– to control how they can access it (e.g., read, write, or delete)

• More generally:

– generalize files to objects (the “what”)

– generalize users to principals (the “who”, user or program)

– generalize read/write to actions (the “how”, or operations)

• A protection system dictates whether a given action

performed by a given principal on a given object

should be allowed

– e.g., you can read or write your files, but others cannot

– e.g., your can read C:\Windows\System32\ntoskrnl.exe

but you cannot write to it

10

Model for representing protection

• Two different ways of thinking about it:
– access control lists (ACLs)

• for each object, keep list of principals and principals’ allowed
actions

– capabilities

• for each principal, keep list of objects and principal’s allowed
actions

• Both can be represented with the following matrix:

C:\boot.ini C:\DocumentsAndSettings/

Markz/desktop

Administrator rw rw

markz r rw

guest

principals

objects

ACL

capability

11

ACLs vs. Capabilities

• Capabilities are easy to transfer

– they are like keys: can hand them off

– they make sharing easy

• ACLs are easier to manage

– object-centric, easy to grant and revoke

• to revoke capability, need to keep track of principals that have it

• hard to do, given that principals can hand off capabilities

• ACLs grow large when object is heavily shared

– can simplify by using “groups”

• put users in groups, put groups in ACLs

– additional benefit

• change group membership, affects ALL objects that have this

group in its ACL

12

The original Unix file system

• Dennis Ritchie and Ken Thompson, Bell Labs, 1969

• “UNIX rose from the ashes of a multi-organizational

effort in the early 1960s to develop a dependable

timesharing operating system” – Multics

• Designed for a “workgroup” sharing a single system

• Did its job exceedingly well

– Although it has been stretched in many directions and made

ugly in the process

• A wonderful study in engineering tradeoffs

13

All disks are divided into five parts …

• Boot block

– can boot the system by loading from this block

• Superblock

– specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks

• i-node area

– contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

• File contents area

– fixed-size blocks; head of freelist is in the superblock

• Swap area

– holds processes that have been swapped out of memory

14

So …

• You can attach a disk to a dead system …

• Boot it up …

• Find, create, and modify files …

– because the superblock is at a fixed place, and it tells you

where the i-node area and file contents area are

– superblock also contains i-node number of root directory

15

The flat (i-node) file system

• Each file is known by a number, which is the number

of the i-node

– seriously – 0, 1, 2, 3, etc.!

– why is it called “flat”?

• Files are created empty, and grow when extended

through writes

16

The tree (directory, hierarchical) file system

• A directory is a flat file of fixed-size entries

• Each entry consists of an i-node number and a file

name
i-node number File name

152 .

18 ..

216 my_file

4 another_file

93 oh_my_god

144 a_directory

• It’s as simple as that!

17

The “block list” portion of the i-node (Unix Version 7)

• Points to blocks in the file contents area

• Must be able to represent very small and very large files.
How?

• Each inode contains 13 block pointers
– first 10 are “direct pointers” (pointers to 512B blocks of file data)

– then, single, double, and triple indirect pointers

0

1

10

11

12

…

…

…

…

…

…

…

18

Protection

• Objects: individual files

• Principals: owner/groups/everyone

• Actions: read/write/execute

• This is pretty simple and rigid, but it has proven to be

about what we can handle!

19

File system consistency

• Both i-nodes and file blocks are cached in memory

• The “sync” command forces memory-resident disk

information to be written to disk

– system does a sync every few seconds

• A crash or power failure between sync’s can leave an

inconsistent disk

• You could reduce the frequency of problems by

reducing caching or via write-through, but

performance would suffer big-time

20

Consistency of the Flat file system

• Is each block accounted for?

– Belongs to precisely one file or is on free list

– What to do if in multiple files?

• Mark-and-sweep garbage collection of disk space

– Start with bitmap (one bit per block) of zeros

– For every inode, walk allocation tree setting bits

– Walk free list setting bits

– Bits that are one along the way?

– Bits that are zero at the end?

21

Consistency of the directory structure

• Verify that directories form a tree

• Start with vector of counters, one per inode, set to

zero

• Perform tree walk of directories, adjusting counters

on every name reference

• At end, counters must equal link count

– What do you do when they don’t?

22

23

Journaling File Systems

• Became popular ~2002, but date to early 80’s

• There are several options that differ in their details

– Ntfs (Windows), Ext3 (Linux), ReiserFS (Linux), XFS (Irix),

JFS (Solaris)

• Basic idea

– update metadata, or all data, transactionally

• “all or nothing”

• Failure atomicity

– if a crash occurs, you may lose a bit of work, but the disk will

be in a consistent state

• more precisely, you will be able to quickly get it to a consistent

state by using the transaction log/journal – rather than scanning

every disk block and checking sanity conditions

24

Why are journaling file systems so

popular?

• In any file system buffering is necessary for

performance

• But suppose a crash occurs during a file creation:
1. Allocate a free inode

2. Point directory entry at the new inode

• In general, after a crash the disk data structures may

be in an inconsistent state

– metadata updated but data not

– data updated but metadata not

– either or both partially updated

• fsck (i-check, d-check) are very slow

– must touch every block

– worse as disks get larger!

25

Where is the Data?

• In the file systems we have seen already, the data is

in two places:

– On disk

– In in-memory caches

• The caches are crucial to performance, but also the

source of the potential “corruption on crash” problem

• The basic idea of the solution:

– Always leave “home copy” of data in a consistent state

– Make updates persistent by writing them to a sequential

(chronological) journal partition/file

– At your leisure, push the updates (in order) to the home

copies and reclaim the journal space

– Or, make sure log is written before updates

26

Undo/Redo log

• Log: an append-only file containing log records

– <start t>

• transaction t has begun

– <t,x,v>

• transaction t has updated block x and its new value is v

– Can log block “diffs” instead of full blocks

– Can log operations instead of data (operations must be

idempotent and undoable)

– <commit t>

• transaction t has committed – updates will survive a crash

• Committing involves writing the records – the home

data needn’t be updated at this time

27

If a crash occurs

• Open the log and parse

– <start> <commit> => committed transactions

– <start> no <commit> => uncommitted transactions

• Redo committed transactions

– Re-execute updates from all committed transactions

– Aside: note that update (write) is idempotent: can be done

any positive number of times with the same result.

• Undo uncommitted transactions

– Undo updates from all uncommitted transactions

– Write “compensating log records” to avoid work in case we

crash during the undo phase

28

Managing the Log Space

• A cleaner thread walks the log in order, updating the

home locations (on disk, not the cache!) of updates in

each transaction

– Note that idempotence is important here – may crash while

cleaning is going on

• Once a transaction has been reflected to the home

blocks, it can be deleted from the log

29

Impact on performance

• The log is a big contiguous write

– very efficient, but it IS another I/O

• And you do fewer scattered synchronous writes

– very costly in terms of performance

• So journaling file systems can actually improve

performance (but not in a busy system!)

• As well as making recovery very efficient

30

Want to know more?

• CSE 444! This is a direct ripoff of database system

techniques

– But it is not what Microsoft Windows Longhorn (aka Vista)

was supposed to be before they backed off – “the file system

is a database”

– Nor is it a “log-structured file system” – that’s a file system in

which there is nothing but a log (“the log is the file system”)

• “New-Value Logging in the Echo Replicated File

System”, Andy Hisgen, Andrew Birrell, Charles

Jerian, Timothy Mann, Garret Swart

– http://citeseer.ist.psu.edu/hisgen93newvalue.html

